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PURPOSE: Beryllium is classified as carcinogenic on the basis largely of limited human data showing
a modest increase in lung cancer from occupational exposure. With occupational exposure now curtailed,
earlier results merit more scrutiny. We simulated data to understand the design implications of a landmark
case-control study.
METHODS: We generated datasets from the original occupational cohort by randomly assigning lung
cancer events to workers independently of their exposure. We analyzed the simulated data on the basis of
different modes of risk-set sampling, with risk sets defined by calendar time, age, or both, to assess how
muchbias existed using several exposuremetrics.Wecontrolled for several time related variables to assess con-
founding. Finally, we re-analyzed the data from the original study, controlling for time-related covariates.
RESULTS: No bias occurred using any type of risk-set sampling with unlagged exposures. When exposure
was lagged 10 or 20 years, however, there was considerable confounding by year of birth and year of hire,
which remained uncontrolled in the original study.
CONCLUSIONS: Simulations and reanalysis show that much of the reported association with lagged
exposure is attributable to confounding by year of birth and year of hire. Lagging changes the exposure vari-
able and can thus lead to changes in the amount of confounding.
Ann Epidemiol 2011;-:-. � 2011 Elsevier Inc. All rights reserved.
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INTRODUCTION

Beryllium was first classified as carcinogenic to humans by
the International Agency for Research Against Cancer in
1993 (1). Much of the human evidence came from a series
of occupational studies among U.S. workers involved with
beryllium processing, culminating in a publication in
1992 (2) that combined data from 7 U.S. processing facili-
ties. This report found an overall standardized mortality
ratio for lung cancer of 1.26, comparing workers in the
plants with population data. Because the formerly high
occupational exposures to beryllium no longer exist, no
new sources of data relating to substantial beryllium expo-
sure are likely. Thus, considerable attention has been
focused on the existing data. Critics have argued that the
association is weak and confounded by smoking and other
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occupational exposures (3, 4). Another concern related to
external comparisons of workers with general population
data. These concerns were among the motivations for
a nested case-control study by Sanderson et al. (5), con-
ducted within one of the seven plants included in the
earlier research.

Sanderson et al. (5) used risk-set sampling in their study,
a version of density-based sampling that samples controls
from the risk set for each case (6). The risk set for each
case includes those who were at risk to become a case at
the time of each case’s occurrence; the time scale may be
calendar time, age, or another time index, such as time since
start of treatment in clinical studies or time since start of
employment in occupational studies (7–9).Whichever vari-
able is chosen as the time index, if associated with exposure
it must then be taken into account as a matching factor and
controlled in the analysis. Other time-related variables that
are not matched may be confounders, as in any other study.

Considerable debate has arisen about the validity of the
study design used by Sanderson et al. (10–16). Some critics
have implied that risk-set sampling could have introduced
a bias, and others have rejected that argument. Like
Wacholder (16), we expect that risk-set sampling should
not in itself introduce any bias, provided that the
time-matching variable is conditioned in the analysis.
Nevertheless, as outlined previously, time-related
1047-2797/$ - see front matter
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confounding factors can still bias a study with risk-set
sampling. Our purpose here is to investigate the extent to
which the risk-set sampling and analysis as conducted by
Sanderson et al. was subject to time-related confounding.
METHODS

Sanderson et al. (5) conducted a nested case-control study
within an occupational cohort of 3569 male workers em-
ployed at a beryllium processing plant in Reading, Pennsyl-
vania, between January 1, 1940, and December 1, 1969, as
described by Ward et al. (2). They sampled controls from
risk sets by using the computer program of Beaumont et al.
(9), with age as the time-matching variable for defining
the risk sets. Controls were sampled randomly without
replacement from workers whose age at death or age at
loss to follow-up was greater than the case’s age at death,
and whose age at hire was less than the case’s age at death,
a version of risk-set sampling that defines the risk sets by
age rather than calendar time. Exposures were estimated
for the final case-control sample according to the methods
outlined in Sanderson et al. (17). Calendar time was not
controlled. The matching was taken into account in their
analysis through the use of a conditional logistic regression
model that conditioned on the risk sets.

The dataset for the studies of Ward et al. and of
Sanderson et al. were made available by National Institute
for Occupational Safety and Health to the sponsor, Brush-
Wellman Corporation. Three subjects had unknown date
of birth in the data of Ward et al., and we excluded them,
leaving 3566 subjects for our analysis. Date of birth was spec-
ified only by month and year. Our copy of the dataset did not
contain data on race, which was controlled by Sanderson
et al. through matching. Otherwise, we used the same expo-
sure and covariate data as Sanderson et al., generating
10,000 datasets that contained lung cancer cases that were
simulated on the basis of population life tables but without
regard to their actual beryllium exposure (Appendix).

We obtained cause-specific, calendar-year-, and age-
specific population mortality rates for white males from
National Institute for Occupational Safety and Health
LTAS.NET (18). For each of the 3566 Reading cohort
subjects, date and cause of mortality was determined
randomly by the use of application of life table rates appro-
priate to their date of birth, starting from their hire date and
continuing until death or exit from the cohort (Appendix).
Exposures were assigned by simple random sampling (with
replacement) from the 852 historical exposures in the data
from Sanderson et al. The simulation process is described
in greater detail in the Appendix. The simulation guaran-
teed a null association between beryllium exposure and
lung cancer.
We then used several different approaches for sampling of
controls and data analysis to estimate how much bias
affected the original study design and analysis. For the first
set of analyses, we used risk-set sampling with calendar
time matching of controls to cases, and no other matching
variable. We included all eligible controls in each risk set.
The exposure of controls was calculated from exposure
information before the occurrence of lung cancer in the
matched case. We analyzed the data by using a conditional
logistic model that conditioned on the matched sets. To
evaluate confounding after using this sampling scheme, we
used four different conditional logistic regression models.
The first model included only terms for the three highest
exposure quartiles. The second model added a single contin-
uous term for year of birth. The third substituted year of hire
for year of birth. The fourth included both year of hire and
year of birth as two continuous terms.

In our second approach to sampling, we replicated the
methodology of Sanderson et al., who used age rather than
calendar time as the risk-set variable. This approach requires
controls to have survived to at least the same age as the
matched case, with exposures truncated for controls at
the age at which the matched case died. The analysis of
Sanderson et al. did not include any control for calendar
time. In our third approach to sampling, we reverted to
calendar time as the risk-set variable, but we also restricted
control selection to controls born in the same year as the
case, thus matching simultaneously for both calendar time
and age.

Sanderson et al. used several measures to assess amount of
beryllium exposure: (i) tenure, defined as total days worked;
(ii) cumulative exposure, expressed as mg/m3 days; (iii)
average daily exposure, expressed as mg/m3; and (iv)
maximum exposure, expressed as mg/m3. For zero lag time,
the strongest association with lung cancer was seen with
average daily exposure, so that is the metric that we used
in our analyses. Following Sanderson et al., we divided the
scale of average exposure into four categories as defined by
the quartile cutpoints of the unlagged exposure from the
study of Sanderson et al. and chose the lowest of these
four categories as the referent. Sanderson et al. recalculated
their quartile cutpoints for each of their analyses as they
changed the exposure with lagging. We applied the quartile
cutpoints from the unlagged analysis to all the lagged anal-
yses to have consistent demarcations for the exposure cate-
gories for all the analyses. We did, however, run additional
analyses by using the changing boundaries recalculated as in
Sanderson et al. to examine what effect, if any, the changing
category boundaries had on the results.

Finally, we used the actual data from Sanderson et al.
(apart from race) to attempt to replicate their design and
analysis. We then added control of year of birth and year
of hire by including indicator terms for quinquennia of these
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variables and compared our findings with and without
controlling those variables. We assumed that the change
in estimate as a result of controlling for these variables re-
flected uncontrolled confounding by these factors.
RESULTS

Our first set of analyses used risk-set sampling on the basis of
risk sets defined as those who were being followed in the
study cohort at the same calendar time that the case died
(‘‘traditional’’ risk-set sampling), and with no other match-
ing variable. In the first (‘‘crude’’) analysis, we used only
exposure to predict lung cancer. Note that calendar time
is controlled by matching and the use of a conditional
logistic model. Because cases were generated independently
of exposure, we would hope to see that all rate ratio esti-
mates are unrelated to exposure. Thus, in the absence of
confounding by other variables, the rate ratio estimates
should center around 1.0. The results of this first analysis
are shown in the first row of Table 1, which shows effect esti-
mates across the four exposure quartiles (using the lowest
quartile as the referent) for each of the three lag times.

For zero lag time, there was in fact no relation with expo-
sure and the median rate ratio estimates were all near 1.0.
With exposure calculated after lagging of 10 or 20 years,
however, we note increasing bias with increasing lag time.
The effect estimates are similar for all three upper quartiles,
indicating that it is the lowest quartile exposure group that
appears to be different from the others. For a 10-year lag, the
median rate ratio was increased approximately 29% in each
of the upper three quartiles, and for a 20-year lag, themedian
rate ratio estimate was increased approximately 54%, indi-
cating substantial bias for these lagged data, especially for
the 20 year lag.

In our second analysis, we used the same sampling
approach as the first analysis, but we controlled for birth
year by including a single continuous term for birth year
in the conditional logistic regression model. (Throughout,
we used birth year instead of age, because with the sampling
scheme used by Sanderson et al., some controls were no
TABLE 1. Median rate ratio estimates using calendar time matched r
simulated analyses with lung cancer cases generated randomly, indepen

Covariates in Analytic Model

Zero

Exposure Quartile

2 3 4

None 1.003 0.998 1.005 1

Birth year 1.004 0.998 1.004 1

Year of hire 1.003 0.999 1.003 1

Birth Year, Year of Hire 1.003 0.998 1.003 1
longer alive in the calendar year of their matched case,
leaving age undefined for them at that time. For someone
alive, birth year is tantamount to age at a specified time,
and for someone who has already died, birth year is well
defined, unlike age.) These results are in row 2 of Table 1.
As before, there was essentially no bias for the unlagged
exposure, but there was bias for the 10-year lagged exposure
andmore bias for the 20-year lagged exposure.With analytic
control of birth year, however, the bias was considerably
smaller, approximately 6% for exposure lagged 10 years
and between 7% and 8% for exposure lagged 20 years. It
appears that the bias seen in the crude analysis is substan-
tially mitigated by controlling for birth year.

Row 3 of Table 1 shows results when the analysis was
repeated using year of hire instead of birth year as a single
continuous term in the conditional logistic model. The find-
ings were similar to those in which birth year was controlled
as a covariate, with slightly less bias for the exposure lagged
20 years, but slightly more with it lagged 10 years. In row 4 of
Table 1 we present the results obtained when controlling for
both year of birth and year of hire in the logistic regression
model. There is still evidence of some bias for the lagged
exposure, but it is smaller than the bias with control of
only one of these two variables, and, interestingly, it is
slightly smaller for the exposure lagged 20 years than it is
for the exposure lagged 10 years.

The next analysis of the simulated data mirrored the
sampling scheme of Sanderson et al., with the use risk sets
defined by age, without regard to calendar time, and with
no control of birth year, calendar year, or year of hire in
the analysis. The results are given in the first row of Table
2. There is no discernible bias for the unlagged exposure,
but considerable bias for exposure lagged by 10 or 20 years,
with approximately a 16% inflation of the rate ratio for the
exposure lagged 10 years and approximately 28% inflation of
the rate ratio (or 25% on the log rate ratio scale) for the
exposure lagged 20 years. As seen in our other simulations,
the bias is nearly constant across the second through fourth
quartiles of exposure, indicating that the problem may be
confined to the referent category of exposure. When we
isk-set sampling, by exposure quartile and lag time, for 10,000
dently of beryllium exposure

Lag Time (yrs)

10 20

Exposure Quartile Exposure Quartile

2 3 4 2 3 4

.291 1.284 1.290 1.539 1.533 1.547

.061 1.059 1.062 1.074 1.071 1.079

.072 1.067 1.072 1.056 1.051 1.062

.045 1.042 1.046 1.034 1.028 1.037



TABLE 2. Median rate ratio estimates using age-matched risk-set sampling, and time and age-matched risk set sampling, by exposure
quartile and lag time, for 10,000 simulated analyses with lung cancer cases generated randomly, independently of beryllium exposure

Time Variables for Risk-Set Sampling

Lag Time (yrs)

Zero 10 20

Exposure Quartile Exposure Quartile Exposure Quartile

2 3 4 2 3 4 2 3 4

Age 1.005 0.999 1.006 1.156 1.153 1.159 1.278 1.272 1.280

Time and Age 1.001 0.996 1.005 1.008 1.006 1.010 1.002 0.997 1.007
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added calendar time as a matching variable, in addition to
age, there was no discernible bias for any of the exposure
metrics, even for the exposure lagged by 20 years (row 2 of
Table 2).

We repeated this analysis matching by year of hire
instead of birth year, and obtained essentially identical
results (results not shown).We noted that matching by birth
year or year of hire, coupled with a conditional logistic
regression conditioning on the matching factors, was more
effective than simply controlling either as a covariate in
the logistic model. The latter approach depends on the
regression model capturing the correct functional relation
between the covariate and the study outcome, whereas the
matching guarantees the absence of confounding by the
matched variables apart from bias that stems from too loose
a match.

To understand the bias better, we selected a typical simu-
lation generated using the control sampling method used by
Sanderson et al. We selected the simulation run for which
the effect estimate in the greatest exposure category with
20-year lagging was closest to the median of that measure
over all simulations. We then stratified the data from that
simulation by year of birth to examine age confounding in
TABLE 3. Data comparing quartile 4 with 1 for a typical
simulated dataset with a 20-year lag time, using the sampling of
Sanderson et al. and stratified by year of birth

Year of birth

Quartile

Cases

quart. 4

Contr.

quart. 4

Cases

quart. 1

Contr.

quart. 1

[1865, 1885) 1 0 1 38

[1885, 1890) 0 1 0 37

[1890, 1895) 0 2 9 30

[1895, 1900) 4 11 2 23

[1900, 1905) 2 12 7 26

[1905, 1910) 3 21 6 26

[1910, 1915) 6 25 9 24

[1915, 1920) 4 10 4 20

[1920, 1925) 4 25 4 29

[1925, 1930) 3 18 3 18

[1930, 1940) 1 8 1 7

Total 28 133 46 278

ORcrude Z 1.27; ORMH Z 1.05.
the stratified simulated data. In Table 3, we show the year-
of-birth-stratified data from a typical simulation using the
control sampling method employed by Sanderson et al.
There is considerable confounding by year of birth, as
a comparison of the crude odds ratio of 1.27 and the
Mantel-Haenszel adjusted odds ratio of 1.05 indicates.
(Although stratification is no longer the usual approach to
control residual confounding in matched studies, it has the
advantage of giving a clearer picture of the origin of the con-
founding.) Most of the confounding is removed by a simple
Mantel-Haenszel adjustment on the basis of strata of year of
birth. The table gives a clue to the mechanism of the con-
founding. The quartile boundaries were established on the
basis of the zero lag data, but in these data with a 20-year
lag, the exposure of many subjects is shifted toward lower
categories. This shift occurs for a greater overall proportion
of controls than cases. In Table 3, there are more than twice
the number of controls in the first quartile than in the fourth
quartile of exposure, but for cases there are only 64% more
cases in the lowest versus the highest quartile.

In Table 4, we examine the actual data from the study by
Sanderson et al. for the greatest level of exposure (quartile 4)
with a 20-year lag. They reported 1.76 for their odds ratio,
TABLE 4. Data from the study of Sanderson et al., stratified by
year of birth, comparing quartile 4 with 1 with a 20-year lag
time

Year of birth

Quartile

Cases

Quart. 4

Contr.

Quart. 4

Cases

Quart. 1

Contr.

Quart. 1

[1865, 1885) 0 0 2 49

[1885, 1890) 0 4 2 28

[1890, 1895) 2 7 3 28

[1895, 1900) 1 4 2 19

[1900, 1905) 2 21 4 16

[1905, 1910) 5 19 1 18

[1910, 1915) 5 21 2 12

[1915, 1920) 8 31 2 9

[1920, 1925) 5 43 4 8

[1925, 1930) 4 14 0 4

[1930, 1940) 0 5 0 7

Total 32 169 22 198

ORcrude Z 1.70, ORMH Z 1.08.
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which corresponds closely to the crude value of 1.70 that we
show in the table. When these data are stratified by year of
birth, however, the Mantel-Haenszel summary odds ratio
over the age strata is 1.08, indicating striking confounding
by this variable in their data and their reported results, con-
firming what we found in our simulations.

A potential difference between our simulation results and
the analysis of Sanderson et al. is their recalculation of expo-
sure scale cutpoints for each analysis. We used consistent
exposure boundaries that were determined by the quartile
cutpoints for the zero-lag exposure data. We therefore re-
analyzed the data from Sanderson et al. using our method
of consistent exposure cutpoints across various analyses, to
compare with their results using recalculated cutpoints. We
found some small to moderate differences in the effect esti-
mates between the two approaches. In nearly all cases the
effect estimates were larger when using the varying cutpoints
employed bySanderson et al. thanusing consistent cutpoints.

As a final step, we repeated the full analysis of Sanderson
et al. with their actual data, rather than simulating the data.
First we used the same analysis that they used, which did not
control for year of birth or year of hire in the analysis. Then
we controlled these two variables in the analysis by
including them in the conditional logistic regression model.
Without controlling for year of birth and year of hire, and
using a 20-year lag, we found that the estimates of odds ratio
for quartiles 2, 3, and 4 were 2.06, 3.03, and 1.80 relative to
the lowest quartile. These values are nearly equal to those
reported by Sanderson et al., but differ slightly, presumably
because we had to surmise precisely what the quartile
boundaries were that were used by Sanderson et al., and
possibly because we were unable to control for race.

With control of year of birth and year of hire, the effect
estimates from the study of Sanderson et al. were greatly
reduced, the extent depending on whether we included
these covariates as continuous terms in the logistic model
or as ‘‘factored variables,’’ a term used to describe converting
a variable into a set of categorized indicator terms in amodel.
By using indicator variables for 11 categories of year of birth
(10 terms) and 6 for year of hire (5 terms), we obtained odds
ratios for exposure quartiles 2, 3, and 4 of 1.55, 1.68, and
0.99, with similar results when including these two variables
as single continuous terms. Thus, most of the reported effect
in the study of Sanderson et al. appears to be attributable to
confounding by these two variables. From analyses that
controlled for one but not both of the two variables, we
found that the confounding seemed to be contributed
approximately equally by both factors.
DISCUSSION

These simulations demonstrate confounding by time-
related variables in a case-control study with risk-set
sampling and lagged exposures. Such confounding is hardly
remarkable, inasmuch as risk-set sampling does not preclude
confounding by time-related variables. In our simulations,
data were generated so that there was no overall association
between exposure and disease, so that any systematic depar-
tures from null effect estimates must reflect bias. The simu-
lations indicate that regardless of whether the risk-set
sampling is done using age or calendar time as the time vari-
able, with the lagged analyses there appears to be residual
confounding by age that needs to be controlled.

The validity of the beryllium studies of Sanderson et al.
and others has been debated in discussion that has called
into question the reliability of risk-set sampling as a method
of control sampling (14–16, 19). We agree with Langholz
and Richardson (14), who argued that there is no funda-
mental bias in risk-set sampling, and with Wacholder,
who argued that nested case-control studies are inherently
valid.We also agree withWacholder that ‘‘Lagging is simply
one way to measure exposure, and does not differ fundamen-
tally from choosing other metrics such as average exposure,
peak exposure, or cumulative exposure without lagging. As
long as exposure is measured only up to the time of the
event, the particular choice of exposure summary cannot
introduce bias in comparing cases and controls’’ (16).
Nevertheless, our simulations show bias that increased
with greater lagging of exposures in the study done by
Sanderson et al. and in various alternative designs that we
simulated. Confounding by year of birth in the actual data
of Sanderson et al. is evident in our Table 4; note that of
those controls who had exposure in the fourth quartile or
the first quartile, the proportion that was in the fourth quar-
tile was only 11% for those with birth year before 1900,
whereas this proportion was 77% for those born in 1920 or
later (Table 4). In contrast, with the zero-lag exposure,
the corresponding proportions were 58% and 42% (data
not shown), a reversed and smaller difference. The differ-
ence in associations for the lagged and unlagged exposures
provides some insight into why the degree of confounding
with year of birth increased with increasing lag time.

These biases, however, are conventional biases that stem
from confounding by uncontrolled, primarily age-related
variables. We have demonstrated that no bias remains, for
example, when year of birth is controlled using conventional
methods such as stratification or inclusion of year of birth in
a conditional logistic regression model. Why should bias
exist for one definition of exposure but not another? Expo-
sures with different lag times are distinct variables, and the
magnitude of their associations with potential confounders
such as age and calendar time will differ as the definition
of exposure changes. Thus, although lagging of exposures
does not in principle create any validity problem itself,
different lag times can result in a different amount of con-
founding, which will need to be controlled in the analysis.
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Another investigation involving simulations and match-
ing on attained age has been reported by Hein et al. (15).
Their work differs from ours in several important respects.
Their interest was in comparing matching on attained age
versus matching on attained age and age at death. Their
findings are difficult to interpret, because it is unclear
what age at death adds beyond age itself, and because they
report both a bias toward the null and an increased type I
error, which appear incompatible. In any event, they did
not start with the actual data of Sanderson et al. (5), but
generated entirely new simulated data, for which they
modeled specific exposure-disease relations, focusing on
mean cumulative exposure as their primary exposure metric.
In contrast, our approach retains the dates of birth and hire
of the original Reading cohort, assigning exposures at
random from the Sanderson et al. data exposures. This
approach guarantees a null relation between exposure and
outcome. We focused on average daily exposure, for which
Sanderson et al. reported the strongest effects. Nothing we
report is discrepant from the results of Hein et al., but our
intent was to address residual confounding after control of
the one time-related variable used by Sanderson et al. in
their matching. Our results show that matching on one
time-related variable and appropriate adjustment for that
matching in the analysis is not sufficient to control con-
founding by other time-related variables.

Part of the problem highlighted here may stem from the
nature of the exposure metric that showed the strongest
associations in the study by Sanderson et al. Average daily
exposure is not a cumulative exposure measure. A worker
who worked for one day could have a much higher average
exposure than a 30-year worker if that one day was a day of
high exposure. This measure reflects age and time-specific
exposure conditions in the workplace and may be more
susceptible to confounding with lagging of exposure than
alternatives, although we have not explored those alterna-
tives in this analysis.
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APPENDIX.

Historical datasets for the Reading, Pennsylvania cohort
and the case-control study of Sanderson et al. (5) were ob-
tained from NIOSH. The Reading file contains complete
date of birth and date of hire information for 3566 of the
3569 subjects in the cohort. Date of birth was known only
to the month, and so all subjects were assumed to have
been born on the 15th of the month, and date of hire
and age at hire were recalculated as decimal values. The
Sanderson file provides date of birth, date of hire, date of
death, cause of death (either lung cancer or other) and esti-
mated exposure for the 142 individuals of the Reading
cohort who died of lung cancer and 710 matched controls
who were selected by risk-set sampling for the study of
Sanderson et al.

Each of our simulated cohorts was generated starting with
the date of birth and date of hire information for each of the
3566 subjects with complete data in the original Reading

http://www.brushwellman.com/EHS/SafetyFacts/SF002.pdf
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cohort. For each of these subjects, date of death and cause of
death (either lung cancer or other cause) was simulated
following the life table approach that follows. Average
exposure was then assigned to subjects by a simple random
sample with replacement from the 852 historical exposures
of the Sanderson dataset. There was therefore no depen-
dence on case-control status in the assignment of exposure
in the simulated data. A total of 10,000 simulated cohorts
were created by this approach.

To assign date and cause of death to each cohort subject,
we used mortality rates from the National Institute for
Occupational Safety and Health (NIOSH)’s LTAS.NET
(18). Mortality rates for white males from lung cancer
were taken directly from the LTAS.NET tables, whereas
the rates for other causes were set equal to the sum of all rates
for non-lung-cancer causes. The NIOSH rates are yearly
rates for 5-year periods and 5-year age ranges. We assigned
these yearly rates to each of the 25 age-year combinations
represented by a single NIOSH risk, here represented as rLjk
for lung cancer and rOjk for other causes for j Z
1865,.,1993, k Z 14,.,120. Because several of the
subjects were hired at age 14, we assigned the age 15 values
to age 14 as well. We assigned the age 85 value to all ages
above 85 in the same birth year. Subject risks rLjk , rOjk , for
calendar year j were set equal to the risk that applied for
the age that the person was on first day of that year.

For each subject, starting with their first year of employ-
ment and continuing for each year thereafter up to
cohort censoring at end of follow-up in December 31,
1992, we simulated whether death or survival occurred,
where the probability death (by lung cancer or other causes)
depends only on the LTAS risks and the duration of employ-
ment in the year. More specifically, for a subject alive and
employed at the start of a given year, as a randomizing
device, two independent uniform random variables 0 !
u1,! 1, 0! u2 ! 1, were generated, with death occurring
by lung cancer if u1 !rLjkf , and by other causes if u2 !rOjk f
where f Z 1, except for the year in which the subject was
hired, when f is the fraction of the year spent in employ-
ment. If the subject was found to have died from both other
causes and lung cancer in a given year, then the cause of
death is lung cancer if u1=r

L
jk< u2=r

O
jk , and other causes if

not. Age at death was set equal to age at the start of the
year plus ð1� fÞ þ f*u1=r

L
jk
if the cause of death was lung

cancer, or age at the start of the year plus
ð1� fÞ þ f*u2=r

O
jk

if the cause of death was other causes.
Follow-up ended at the end of 1992, at which time all
subjects still alive were considered withdrawn alive.
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